PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation.
نویسندگان
چکیده
Activation of Raf-1 suppresses integrin activation, potentially through the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). However, bulk ERK1/2 activation does not correlate with suppression. PEA-15 reverses suppression of integrin activation and binds ERK1/2. Here we report that PEA-15 reversal of integrin suppression depends on its capacity to bind ERK1/2, indicating that ERK1/2 function is indeed required for suppression. Mutations in either the death effector domain or C-terminal tail of PEA-15 that block ERK1/2 binding abrogated the reversal of integrin suppression. Furthermore, we used ERK/p38 chimeras and site-directed mutagenesis to identify ERK1/2 residues required for binding PEA-15. Mutations of residues that precede the alphaG helix and within the mitogen-activated protein kinase insert blocked ERK2 binding to PEA-15, but not activation of ERK2. These ERK2 mutants blocked the ability of PEA-15 to reverse suppression of integrin activation. Thus, PEA-15 regulation of integrin activation depends on its binding to ERK1/2. To directly test the role of ERK1/2 localization in suppression, we enforced membrane association of ERK1 and 2 by joining a membrane-targeting CAAX box sequence to them. Both ERK1-CAAX and ERK2-CAAX were membrane-localized and suppressed integrin activation. In contrast to suppression by membrane-targeted Raf-CAAX, suppression by ERK1/2-CAAX was not reversed by PEA-15. Thus, ERK1/2 are the Raf effectors for suppression of integrin activation, and PEA-15 reverses suppression by binding ERK1/2.
منابع مشابه
Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation.
Cell cycle progression is dependent on the nuclear localization and transcriptional effects of activated extracellular signal-regulated kinase (ERK)1 and ERK2 mitogen-activated protein (MAP) kinases (ERK1/2). Phosphoprotein enriched in astrocytes (PEA-15) binds ERK1/2 and inhibits their nuclear localization, thus blocking cell proliferation. Here, we report that phosphorylation of PEA-15 blocks...
متن کاملStructure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK
ERK1/2 kinases are the principal effectors of a central signalling cascade that converts extracellular stimuli into cell proliferation and migration responses and, when deregulated, can promote cell oncogenic transformation. The scaffolding protein PEA-15 is a death effector domain protein that directly interacts with ERK1/2 and affects ERK1/2 subcellular localization and phosphorylation. Here,...
متن کاملPEA-15 inhibits tumor cell invasion by binding to extracellular signal-regulated kinase 1/2.
Phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) binds to extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinases to alter ERK1/2 cellular localization and target preferences and binds to adaptors in the extrinsic cell death pathway to block apoptosis. Here, we report that PEA-15 protein expression is inversely correlated with the invasive behavior...
متن کاملPhosphoprotein Enriched in Astrocytes 15 kDa (PEA-15) Reprograms Growth Factor Signaling by Inhibiting Threonine Phosphorylation of Fibroblast Receptor Substrate 2α
Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains E...
متن کاملAkt down-regulates ERK1/2 nuclear localization and angiotensin II-induced cell proliferation through PEA-15.
Angiotensin II (AngII) type 1 receptors (AT1) regulate cell growth through the extracellular signal-regulated kinase (ERK)1/2 and phosphatidylinositol 3-kinase (PI3K) pathways. ERK1/2 and Akt/protein kinase B, downstream of PI3K, are independently activated but both required for mediating AngII-induced proliferation when expressed at endogenous levels. We investigate the effect of an increase i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 52 شماره
صفحات -
تاریخ انتشار 2003